ТОО "Ульба-ТВС"

Атомная электростанция (АЭС) – комплекс технических сооружений, предназначенных для выработки электрической энергии путем использования энергии, выделяемой при контролируемой ядерной реакции. В качестве распространенного топлива для атомных электростанций применяется уран. Реакция деления осуществляется в основном блоке атомной электростанции – ядерном реакторе.

Атомная электростанция (АЭС) – комплекс технических сооружений, предназначенных для выработки электрической энергии путем использования энергии, выделяемой при контролируемой ядерной реакции.

 

В качестве распространенного топлива для атомных электростанций применяется уран. Реакция деления осуществляется в основном блоке атомной электростанции – ядерном реакторе.

Существует несколько типов ядерных реакторов. Наибольшее распространение получили тpи основных типа реакторов, различающихся, главным образом, топливом, теплоносителем, применяемым для поддержания нужной температуры активной зоны, и замедлителем, используемым для снижения скорости нейтронов, выделяющихся в процессе распада и необходимых для поддержания цепной реакции.

Среди них первый и наиболее распространённый тип – это реактор на обогащенном уране, в котором и теплоносителем, и замедлителем является обычная, или "легкая", вода (легководный реактор). Существуют две основные разновидности легководного реактора: реактор, в котором пар, вращающий турбины, образуется непосредственно в активной зоне (кипящий реактор, в России – РБМК - реактор большой мощности, канальный), и реактор, в котором пар образуется во внешнем, или втором, контуре, связанном с первым контуром теплообменниками и парогенераторами (водо водяной энергетический реактор – ВВЭР).

 

Второй тип реактора – газоохлаждаемый реактор (с графитовым замедлителем).

 

Третий тип реактора, – это реактор, в котором и теплоносителем, и замедлителем является тяжелая вода, а топливом природный уран.

 

Существует также реактор на быстрых нейтронах (БН).

 

Реактор смонтирован в стальном корпусе, рассчитанном на высокое давление – до 1,6 х 107 Па, или 160 атмосфер.

Основными частями ВВЭР-1000 являются:

 

1. Активная зона, где находится ядерное топливо, протекает цепная реакция деления ядер и выделяется энергия.

2. Отражатель нейтронов, окружающий активную зону.

3. Теплоноситель.

4. Система управления защиты (СУЗ).

5. Радиационная защита.

Теплота в реакторе выделяется за счет цепной реакции деления ядерного топлива под действием тепловых нейтронов. При этом образуются продукты деления ядер, среди которых есть и твердые вещества, и газы – ксенон, криптон. Продукты деления обладают очень высокой радиоактивностью, поэтому топливо (таблетки двуокиси урана) помещают в герметичные циркониевые трубки – ТВЭЛы (тепловыделяющие элементы). Эти трубки объединяются по несколько штук рядом в единую тепловыделяющую сборку. Для управления и защиты ядерного реактора используются регулирующие стержни, которые можно перемещать по всей высоте активной зоны. Стержни изготавливаются из веществ, сильно поглощающих нейтроны – например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции. Перемещение стержней производится дистанционно с пульта управления. При небольшом перемещении стержней цепной процесс будет либо развиваться, либо затухать. Таким способом регулируется мощность реактора.

Схема станции – двухконтурная. Первый, радиоактивный, контур состоит из одного реактора ВВЭР 1000 и четырех циркуляционных петель охлаждения. Второй контур, нерадиоактивный, включает в себя парогенераторную и водопитательную установки и один турбоагрегат мощностью 1030 МВт. Теплоносителем первого контура является не кипящая вода высокой чистоты под давлением в 16 МПа с добавлением раствора борной кислоты – сильного поглотителя нейтронов, что используется для регулирования мощности реактора.

Основные процессы, происходящие во время работы АЭС:

1. Главными циркуляционными насосами вода прокачивается через активную зону реактора, где она нагревается до температуры 320 градусов за счет тепла, выделяемого при ядерной реакции.

2. Нагретый теплоноситель отдает свою теплоту воде второго контура (рабочему телу), испаряя ее в парогенераторе.

3. Охлажденный теплоноситель вновь поступает в реактор.

4. Парогенератор выдает насыщенный пар под давлением 6,4 МПа, который подается к паровой турбине.

5. Турбина приводит в движение ротор электрогенератора.

6. Отработанный пар конденсируется в конденсаторе и вновь подается в парогенератор конденсатным насосом. Для поддержания постоянного давления в контуре установлен паровой компенсатор объема.

7. Теплота конденсации пара отводится из конденсатора циркуляционной водой, которая подается питательным насосом из пруда охладителя.

8. И первый, и второй контур реактора герметичны. Это обеспечивает безопасность работы реактора для персонала и населения.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях).

Безопасность и экологичность работы реактора обеспечиваются жестким выполнением регламента (правил эксплуатации) и большим количеством контрольного оборудования. Все оно предназначено для продуманного и эффективного управления реактором.

Аварийная защита ядерного реактора – совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора.

 

Активная аварийная защита автоматически срабатывает при достижении одним из параметров ядерного реактора значения, которое может привести к аварии. В качестве таких параметров могут выступать: температура, давление и расход теплоносителя, уровень и скорость увеличения мощности.

 

Исполнительными элементами аварийной защиты являются, в большинстве случаев, стержни с веществом, хорошо поглощающим нейтроны (бором или кадмием). Иногда для остановки реактора жидкий поглотитель впрыскивают в контур теплоносителя.

 

Дополнительно к активной защите, многие современные проекты включают также элементы пассивной защиты. Например, современные варианты реакторов ВВЭР включают "Систему аварийного охлаждения активной зоны" (САОЗ) – специальные баки с борной кислотой, находящиеся над реактором. В случае максимальной проектной аварии (разрыва первого контура охлаждения реактора), содержимое этих баков самотеком оказываются внутри активной зоны реактора, и цепная ядерная реакция гасится большим количеством борсодержащего вещества, хорошо поглощающего нейтроны.

 

Согласно "Правилам ядерной безопасности реакторных установок атомных станций", по крайней мере одна из предусмотренных систем остановки реактора должна выполнять функцию аварийной защиты (АЗ). Аварийная защита должна иметь не менее двух независимых групп рабочих органов. По сигналу АЗ рабочие органы АЗ должны приводиться в действие из любых рабочих или промежуточных положений.

Аппаратура АЗ должна состоять минимум из двух независимых комплектов.

 

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы в диапазоне изменения плотности нейтронного потока от 7% до 120% номинального обеспечивалась защита:

1. По плотности нейтронного потока – не менее чем тремя независимыми каналами;

2. По скорости нарастания плотности нейтронного потока – не менее чем тремя независимыми каналами.

 

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы во всем диапазоне изменения технологических параметров, установленном в проекте реакторной установки (РУ), обеспечивалась аварийная защита не менее чем тремя независимыми каналами по каждому технологическому параметру, по которому необходимо осуществлять защиту.

 

Управляющие команды каждого комплекта для исполнительных механизмов АЗ должны передаваться минимум по двум каналам. При выводе из работы одного канала в одном из комплектов аппаратуры АЗ без вывода данного комплекта из работы для этого канала должен автоматически формироваться аварийный сигнал.

Срабатывание аварийной защиты должно происходить как минимум в следующих случаях:

1. При достижении уставки АЗ по плотности нейтронного потока.

2. При достижении уставки АЗ по скорости нарастания плотности нейтронного потока.

3. При исчезновении напряжения в любом не выведенном из работы комплекте аппаратуры АЗ и шинах электропитания СУЗ.

4. При отказе любых двух из трех каналов защиты по плотности нейтронного потока или по скорости нарастания нейтронного потока в любом не выведенном из работы комплекте аппаратуры АЗ.

5. При достижении уставок АЗ технологическими параметрами, по которым необходимо осуществлять защиту.

6. При инициировании срабатывания АЗ от ключа с блочного пункта управления (БПУ) или резервного пункта управления (РПУ).